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ABSTRACT

\qbﬁe

A method is discussed for reducing ionograms to electron
density height profiles on a modern digital computer by a repre-
sentation in terms of parabolic laminations. This provides good
accuracy without an excessive number of scaled points, Since
no precomputed coefficients are used, ionograms may be scaled
at any frequency and from any location. It is shown how a least
squares joint ordinary and extraordinary analysis enable a
correction to be made for underlying ionization, and reduces
sensitivity to scaling errors.

Some special features of topside ionograms are discussed.
Formulation in terms of segments parabolic in log (plasma fre-
quency) is especially efficient in terms of matching layer shape
without discontinuity of slope. Techniques for incorporating the
variation of gyrofrequency with altitude are discussed. Itis
particularly emphasized that significant errors in the deduced

electron scale height can be made if this is not done adequately.

o



.

b

1. INTRODUCTION

The sweep frequency ionosonde provides a powerful tool
for obtaining el ectron density profiles in the ionosphere, parti-
cularly in the F region. In recent years, not only have ground
based ionosondes been used for profiles up to the F region
electron peak, but topside sounders have also been used in an
analogous manner to obtain profiles from satellite altitudes down
to the peak of the F region. Unfortunately, the reduction of these
ionograms to electron profiles is not always a straight forward
matter, and a number of methods have been described in the
literature for accomplishing this with varying degrees of ease and
accuracy.

In this work, a versatile method is developed for use.om:a
high speed digital computer. Full account is taken of the earth's
magnetic field, and the ionograms may be scaled at any frequency
and for any geographical location since no precomputed coefficients
are used. The method is based on fitting the profile by a set of
parabolic laminations, which provide more accuracy than linear
laminations without the danger of oscillation inherent in higher
order polynomials. Conversely, for a given accuracy, fewer
points need to be scaled. Discussion is restricted to the case
of monotonic profiles.

It is shown how the method may be extended to a joint

reduction of ordinary and extraordinary traces, and how the use
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of a least squares technique reduces sensitivity to scaling
errors. With this approach, a correction for low frequency
cut -off errors using average values of a low frequency virtual
height is shown to be quite feasible for the F region.

The topside presents some special features. Advantage
is taken of the approximately logarithmicushape expected from
theory and found in practice. On the other hand, account
must be taken of the variation of gyrofrequency with altitude.
Several methods of doing this are discussed, and a model
study illustrates the errors which can arise both in the profile
and the deduced values of electron scale height. It is shown
that significant errors in this scale height can result. from

an inadequate method for compensating for this variation.

2. SINGLE MODE ANALYSIS

The electron density profile is represented by a set of

parabolic segments of the form

Z =2Z.+ a. (£
j J(N

- i) Ry g - g ) iy Sy Sy

j j j i+l

as illustrated in Figure 1. Each parabola extends between two

plasma frequencies, f . and f . These are the reflection
Nj Nj+ 1

frequencies for which the ordinary or extraordinary rays are
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scaled and can be chosen at will. The parabolic segments

are constrained to have continuity of height and slope at their
junction. Therefore, Zj is known from the previous segment

and
a. =a +2bj- (f - f ) . (2)

Thus, there are three unknownsA: Zl’ ay» and bl for the first
segment, but there is only one unknown, bj’ for each of the others.
Equation (1) can also be derived by expanding Z in a

Taylor series about f.. up to the second derivative. In this form

N.
J
the present method is similar to that of Paul (1960 a,b) who used

an expansion in fN‘Z. In the well-known method of Budden (1954),
linear segments are employed, and Titheridge (1961) has used
polynomials of higher degree over much longer intervals. There
is no '"best' choice of functions below the F2 peak because of
the complicated structure of the lower ionosphere.

The well known equation relating true height, Z, to virtual
height, h', for a monotonic profile is

h'(f

Z. + \

K =2+ 3T N (3)

where p' is the group refractive index of either the ordinary or

extraordinary mode, and Z1 is the effective base of the ionosphere
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where fN = 0. The plasma frequencies of reflection, fN , are
k
given by
ka = fk for the ordinary mode,
and ka = '\/flz‘ - fka for the extraordinary mode,

where fh is the electron gyrofrequency.

Combining equations (1) and (3) gives

£ f
%-1 N. i1 Nj+1
! - 1 - 1
h'(f) =2, + i |:aj SJ u'diy + ijg (fy fNj) " diJ.(4)
j=1 IN. N,
j j

These integrals can be calculated immediately in a straight
forward manner as described in Appendix 1. If the term in bj

is put equal to zero, this reduces to the linear segment method of
Budden. It is interesting to note that the extra term needed here
can be obtained with only a trivial increase in machine time, since
most of this time is needed for computing p' which is used in
evaluating both integrals simultaneously.

To solve equation (4) for the first segment, the additional
constants Zl and a, must be found by an alternative method since
there is only one virtual height available here. This can be done
in a variety of ways, one of which is to compute the first parabola

from the first three virtual heights. Table 1 shows the results

obtained from a model computation for the cosine layer defined by
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with fP = 5nx¢,

ZM = 133.3 km,

Y = 100 km.
The virtual heights were taken from a table prepared by Becker
(1960), and these were then reduced by the preceding parabolic
method as well as by the Budden method. The first virtual height:
is zero, corresponding to the bottom of the layer. The improve-
ment in accuracy is readily seen.

With real ionograms, however, virtual heights are not

visible below some minimum frequency, f It is obvious that

min
any number of h'{f) curves could be drawn below fmin’ each
giving a different electron density distribution above as well as
below fmin' A common assumption is that of a flat base, with

all virtual heights below fmin equal to the value at fmin' The
resulting profile is flat below fmin and everywhere higher than the
original layer. During the day, the flat base assumption is
relatively good for the F region,but at night serious errors can
result. Titheridge (1961) has published empirical correction
formulas for these night time profiles.

Special low frequency ionograms (O'Brien and Ross, 1958);

VanMeter, 1950; Sulzer and Underhill, 1949; Hardy, 1963) indicate
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that the virtual heights near 75 kc are relatively constant at
95 = 15 km both diurnally and seasonally. Thus, -the first
parabola can be computed by putting Z 1= 95 km and using,
in addition, the first two scaled virtual heights. The
reduction then proceeds in the normal step-by-step fashion.
Examples of these last two techniques are presented after

the following section.
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3. JOINT ORDINARY AND EXTRAORDINARY MODE ANALYSIS

WITH LEAST SQUARES

One of the most important problems of reducing bottom-
side ionograms to electron density profiles is the fact that
echoes are not seen down to zero plasma frequency. As mentioned
earlier, with a single magneto-ionic mode, and in the absence
of other information, there is no unique electron density profile.

Storey (1960) suggested that this problem could be
resolved by simultaneous solution of the equations for the ordinary
and extraordinary modes. Whether a unique solution exists, in
general, has not yet been answered definitely (Brown, 1964).
However, with the restriction of any particular shape foreach
segment, including the first, a unique solution can be found.
Such a profile cannot be expected to produce virtual heights
agreeing exactly with the scaled values. Consegquently, we seek
a profile which minimizes, with respect to the lamination para-
meters, the sum of the squares of the differences befween the
observed virtual heights and thes e produced by the profile.

It should be noted that this calculated profile is not necessarily
the best fit to the actual ionosphere . In fact, some entirely
unreasonable distributions have produced better agreement of
virtual heights than others which more closely approximate the
model used. An important feature of the least squares method

is that additional data in excess of the minimum needed for a
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solution can be utilized to reduce the effect of scaling errors and
to improve the stability of the solutions.

Assume that the ordinary mode virtual heights have been
scaled at arbitrary frequencies f2 through fM (f1= 0). These
frequencies are then used to divide the true height profile into
parabolic segments so that the size of each segment is easily
controlled. In addition to the M-1 scaled ordinary mode points,
suppose that N extraordinary mode virtual heights have been
scaled at arbitrary frequencies le through fXN' Because the
first parabolic segment, which extends from fN =0 to fN = fZ’
has two extra unknowns, at least two extraordinary samples are
required; in practice about four points are scaled.

Then equation (4) is written as

1 -
ho(fz)—alD 1+b D

1 22+O+... +Z

2 1°2, M+ 1

D31+b D,,+b,D, +0+

1032 702035 +21D3 vt

h(')(f)=a1

+ ... +b D zZ

1 _
ho(fM) = alD +b,D M-1 M,M+

M,17P1PMm, 2 1Py, M+1 (5)

! —
hX (fxl)—alD b.D 0+... +2

M+1,17P1 P01, 2% - tP

j-1Pme1,5t 1PM+1, M+ 1

1 -
b =a D, 171 PN, 27 P 1 P v, kPO 2 Py, Mt 1.

In the above, (2) has been employed to relate a, through
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aLM_l to a, and the b's. The coefficients D., are constants and

jk
are computed as follows:
Dy Mgy =1 =2, M+N
f
i-1 ?k+l
Dj ‘) B (fj) di, k=2, M+N;
k=1 f
Ny
fN. fN
C J J(—_l ; 1+1
- - 1 - \ L 1
Djk ) (fN_ fN. l) V) (fJ.)di + Z(fNk ka 1) /) |J.(fj )af,.,
f J” e, f
Nj-l N, N,

j=2, M+N; k=1, M+N-1;

For the extraordinary mode, the highest value of fN is that
corresponding to reflection, and the appropriate extraordinary

wave frequency is used.
To simplify the notation, let the variables a, b, and Z be

represented by X so thata, = X, bj = Xi+1’ and Z, = XM+1' In
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matrix notation, equation (5} is

o
Il 5

fl
2

(6)

There are M+1 unknowns with M+N-1 linearly independent equations.
Lanczos (1956) states that the least squares solution of (6) is the

solution of

t t

D (7

g
[

i
o
1E4

where Pt is the transpose of D.

This is proved in Appendix 2. Now _Qt D is an M+1 by M+1

symmetric array, and ]_Dt}_1' is an M+1 column thus producing M+ 1
equations in M+ 1 unknowns. Egquation (7) is solved for each X by
Gaussian elimination rather than by matrix inversion to reduce

computational errcrs. The remaining a's are calculated from (3)

and the true heights are then given by (4).

3.1 MODEL COMPUTATIONS

The techniques discussed in the previous sections were tested
on typical day and nighttime model profiles as shown in Figure 2.
The computed ionograms are shown in Figures 3 and 4, where the
scaled points are shown by dots. In order to provide a realistic

test, all scaled virtual heights were rounded to the nearest 5 km.,

since such scaling accuracy is easy to achieve in practice, and is
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in fact, often exceeded.

The results from the daytime model are shown in Table
2, where the errors are indicated. It is seen that the flat base
assumption is the worst, and that there is no significant
difference between the other results.

Computed profiles for the nighttime model are shown in
Figure 5. Here, the differences between alternative methods
of compensating for underlying ionization are more pronounced,
due to the increased thickness of the lower portion of the profile.

The first base assumption leads to large errors; as is well known.
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The best solution was obtained with the least squares technique
and a known virtual height at 75 kc/s. It is to be noted, from
curves 2, 3, and 4, that errors of 15 km. in this low frequency
virtual height result in much smaller errors in the F region
profile. Since average values for day and night conditions are
certainly known to this accuracy, it is suggested that the inclusion
of such a low frequency average virtual height provides a simple

method of compensating for underlying ionization.

3.2 SOME ACTUAL PROFILES

Figures 6 and 7 show profiles computed from actual
ionograms taken at Fort Belvoir at 1300 EST on December 23,
1957, and at 0001 EST on the same day; respectively.

A least squares analysis of the former could not be
performed because the extraordinary trace was not observed
below 5 mc. At this high a frequency the influence of the region
below fmin in the extraordinary trace is too small for this mode
to be of use. Differences between the flat base and Z1 = 95 km
single mode solutions of the daytime ionogram are about 17 km
at fmin’ but at night this difference increased to 50 kmm. The
actual nighttime profile is probably near the least squares
solutions since it has been seen from the model studies that
the single mode solutions at night are somewhat below the true
profile. Thus, the correction obtained by least squares joint

mode analysis over the flat base analysis is about 30 km.
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A minimum of two extraordinary virtual heights are
required by the least squares program, and four were used in
these computations. With only two samples, the effects of
rounding errors in the data become more pronounced, but
with four samples these errors have little effect. It has been
observed that if these ordinary mode samples whose frequency
is above the highest extraordinary mode plasma frequency of
reflection are removed, then the remaining profile remains
unchanged. Thus, additien of high frequency ordinary mocde
samples does not affect the lower portion of the profile. If
high frequency extraordinary samples are also included the
lower portion of the profile changes in order to minimize all
of the residuals. High frequency extraordinary mode samples
have a detrimental effect on the profile as a whole so that
only four samples are usually taken near the beginning of the

extraordinary trace on the ionogram.

4. THE TOPSIDE

Regular soundings have recently been made by the
Alouette satellite from 1000 km down to the F2 electron peak
(Chapman, 1963). These are analogous to the bottomside
soundings but differ from them in several important details.

The sounder is immersed in the ionosphere, and echoes

are not seen until the plasma frequency of reflection exceeds the
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plasma frequency around the satellite (Fitzenreiter and Blumle,
1964). The extraordinary mode virtual height, measured
downward from the satellite, is usually seen to zero range, so
that there is no low frequency cuf-off problem. Ordinary mode
echoes, however, are seldom seen down to zero range (King
et al., 1963), and for this reason only the extraordinary mode
is usually reduced.

It is found that the profile, except near the F2 peak, can
be approximately described over fairly large ranges by Z

proportional to log f We therefore chose segments of the

N°

form

2
zZ = Zj + aj(log fN—log fN.) + bj (log £\, - log f _) s

J

N N
-J

for £ < f; <f
j i+l

In this section, Z is defined as the distance below the satellite.

Since this equation can be made to represent the profile quite
well over rather large height ranges, only a small number of
segments need be used to obtain high accuracy. Furthermore,
diffic ulties connected with scaling topside ionograms at low
frequencies, where h'(f) increases rapidly, can be avoided
because the curvature of parabolic segments allows more
widely spaced samples to be taken. Other workers have chosen

linear laminations in log N (Fitzenreiter and Blumle, 1964),
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2 .

N (Paul and Wright, 1963),

and polynomials in fN (Knecht et al., 1962; Thomas and

parabolic laminations in log {

Long, 1963; and Thomas and Westover, 1963).

An important complication arises from the fact that
the variation of gyrofrequency, fh, with altitude cannot be
ignored on the topside since it varies by about 30% between
1000 and 250 km. For the extraordinary ray, this variation
enters the computations in two places; in the plasma frequency
of reflection, fN = '\/’ fz - f fh’ where fh must be evaluated at
the (initially unkrfown) altitude of reflection, and in the computation
for the refractive index. The former effect is the most important,
but the second is not negligible and, of course, it is the only
effect which would arise if the ordinary ray were used.

Four techniques of gyrofrequency compensation have been
developed, the first and fourth by one of us (J.R.D.). Each of

these has been applied to the single mode method presented ear-

lier; that is, solving equations of the form

log f log £
k=1 Nig1 Niia .
"(f,) = N 1 "dlogf 2b r log f log f 'dlogf
h'( k) = aj J M og N+ j J ( og N og N) [ og N J
J log fN log FN .

J J

(8)
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Technique 1. Post Reduction

The gyrofrequency is held constant and equal to its

value, fh , at the satellite throughout the computation of the

entire przﬁle. This means that p.}'{ is too small, and that
each plasma frequency of reflection, fN.’ is too large. These
two errors tend to cancel in the evaluatiJon of the integrals

of p.}'( so that the true heights, Zj’ are fairly accurate. At

h is evaluated by either an inverse cube law

or a polynomial expansion for the magnetic field. A new value

each height Zj’ f

for each fN is then found from

J

_ 2
fNj = ij - £ £(2)) (9)

Thus, the profile is shifted to lower values of electron density
at each height. This is the simplest of the four techniques and
derives its name from the fact that no compensation is applied

until all the true heights have been found.

Technique 2. Step-by-step

The gyrofrequency is held constant only over a lamination.
For each lamination it is computed at the height of the beginning
(or top) of the lamination and is then used in calculating both

p'x and fN Thus, f, is periodically reevaluated and increases

h
r
in steps going down the profile. Here again p.}'{ is too low and

fN is too high because fN corresponds to an altitude at the
r
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beginning of a lamination rather than at a lower altitude. The
errors in p'x and fN do tend to cancel somewhat, but the in-
tegrals of W' are toorlarge. Therefore,the profile will be too

great an altitude above the ground and the densities at these

heights will be a little too large.

Technique 3. Step-by step with Post Reduction

The preceding methods are combined so that fh increases

in steps and fN is reevaluated at each height of reflection. To
r

illustrate the technique, consider the first lamination. Both

h
r

the following parabolic segment is found:

fN and the integrals of p'X are calculated with f, = fh , and
s

2
Z=2Z,+ al(log fN—log le)+ b, (log fN—log le) (10)
where Zl =0, and fN is the plasma frequency at the satellite.
1

The height, Z,, at the bottom of the segment is given by
equation (10) when

fo=f_ = N ££ £ 1 (11)

N N2 - 2 2 °h_ -

s

In the section on technique 1 it was pointed out that the
errors in fN and p;{ arising from a constant fh. tend to cancel
in the integrals of pL'X so that the height of reflection, Z,, is

nearly correct. The compensation procedure is then to
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recompute { by equation (10) with fh replaced by
s
however, is not

N>
fh at ZZ' This new and smaller fNZ,
consistent with equation (10) at height ZZ' We seek values

for fN which satisfies equation (10) and
2

2
fN2= N £ - £, £ (Z) (12)

where fh (Z) is the gyrofrequency at any height Z; fh (Zz=0) = fh
s
Equation (10) and (12) are plotted together in Figure 8; fh(Z) was

assumed to obey the inverse cube law

R+Hs
s{ R+H -2
s

£, (Z) =1 (13)

h
where R is the mean earth radius, and HS is the altitude of the

satellite. The desired value for FN is found from the inter-
e ]

o

section of these curves. The height at this intersection becomes
the new height of reflection, ZZ’ and is less (nearer the satellite)
than originally computed. Since ZZ was nearly correct originally,
this new value will be too small. This completes the evaluation
of the first lamination.

Evaluation of the second lamination procedes in the same
manner, except that below Z2 the gyrofrequency is assumed to be

the value at ZZ'
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Technique 4. Iterative

The ideal solution to the compensation problem would
be to compute integrals of p' and the plasma frequencies of
reflection with a continuously varying gyrofrequency. The
first lamination will be considered separately from the others
because it is treated somewhat differently. Consider the

first lamination. We wish to solve the equations

-
i —
h' (£,) =0
log £ log £
N N
B (6) =a. & w (f2.faf.8) dlog f 42b. | (logIN/E. ) u' d log f
x"2 l‘) Px Y2 Nty OB IN 1) g N, Hx g 'N L
long1 ‘ long
1
log £ log £
N, Ny
h' (£.) =a. \ ' (£, fur £.0)d log f+2b. | (log IN/f. )u' d log f
x '3 1, M Y3 N tne EINTP1 ) g N,'Hx N
log £, log £, J
= Nl ° 1‘11

(14)
for the constants a, and b1 with the gyrofrequency varying with
height. Here ¢ is the angle between the wave normal (vertical)
and the earth's magnetic field. It should be noted that, although
the parabolic segment extends over two laminations, only the
first part will be used in the final profile.

Since we wish to include a varying fh, it must be expressed

as a function of fN in order to be included in the integrals. Initially,
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there is no relation for fh (f and fh is assumed to be a

N
constant equal to fh. The plasma frequencies of reflection,
s

sz and fN3, are computed from

with fN equal to the plasma frequency at the satellite.
1

Equation (14) is now solved for a, and b1 to give the parabolic

1

segment

Z = ay (log fN - log le) + b1 (log fN - log le),

f < f. <f . (15)

Equation (15) together with an expression for £

h(Z), such as

the inverse cube law

R+H
s

R+H, - Z | (13)

£(2) = £
S

provide an initial relationship between fh and f In the same

N

way as technique 3, new values of fN which are consistent with
j

both the profile and the gyrofrequency can be computed by

simultaneous solution of equations (15), (13), and
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]2
fNj = '\/fj - £ 4, (2).

Lamination parameters a, and b1 are then recomputed from
equation (14) which now includes the new values of fN. and a
variable gyrofrequency given by equations (13) and (lg). The
new parameters ay and b1 again provide a relationship between

fh and f The process of solving equation (14) with a previous

N
profile linking fh to fN

changes. This is usually four times for the extraordinary and

is repeated until the profile no longer

two times for the ordinary mode.

The second and remaining laminations are computed in
the following manner. From the boundary conditions of
continuous height and slope between parabolic segments we know
that

j i-1 + ij—l (log fN. - log fN ), §J > 2.
J

j-1 -
To improve the convergence of the solution, fh is initially
assumed to be related to f,, by equation (13) and

N

= - < <
Z Zj +a; (log fN log fN.) , fN. £ f .
J j j+1

The iterative process described above is then applied to fN

J
and to the integrals over this lamination to give a final answer

for bj; convergence is the same as for the first lamination.
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In this way, a continuously varying gyrofrequency can be
incorporated into the calculation of the plasma frequencies of
reflection and of the integrals of p'. Computation time is only

about twice that for the simplest method.
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4.1 MODEL COMPUTATIONS

Each gyrofrequency compensation technique was tested
on two Chapman layer models. An inverse cube law for
fh(Z) was assumed in computing the virtual heights. The
first model, Figure 9, represents a daytime mid-latitude
profile. The second Figure 10, is a simplified, nighttime,
high latitude profile used to illustrate reduction difficulties
when the electron density is low and the gyrofrequency is
high.

In addition to the four techniques presented here, results
of the linear lamination method described by Fitzenreiter and
Blumle (1964) are shown for comparison. In this method, a
lamination is computed initially with a constant value of fh
corresponding to the bottom of the previous lamination. The

calculation is then repeated with IN and H:x using the value of
fh at the bottom of the new laminatiopril.

Results for the daytime moedel are presented in Table III
as normalized errors of both density and height. In the case
of height, the normalization was made with respect to the distance
from the satellite. The errors are almost entirely due to the
techniques because the virtual heights were known to two decimal
places and the wave frequencies to four places; the same is true
for the nighttime model. (Nighttime model profiles are shown in

Figure 11.) Profiles from both step-by step techniques are at

greater altitudes and smaller densities than the models.
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It is interesting to note that the computed points for both
of these techniques, for both models, lie along approximately
the same smooth curve. Consequently, the additional correction

of fN in technique 3 does not improve the basic step-by-step

X
approach. The post reduction technique, however, gave quite

good results for both models. This was unexpected because the
success of the method depends on cancellation of errors in the
integrals of p.'x. This cancellation was not expected to hold when
fh /f is large (it was 0.84 at the satellite for the nighttime model)
because p'x is especially sensitive to the variation of fh when

fh./f > 0.8. However, the post reduction correction method is good
and better than the step-by-step techniques.

The iterative technique is the most sophisticated and
produced the most accurate results. Errors in height and density
were very small for both models, about an order of magnitude
less than these of the other techniques. The accuracy of the
electron density profiles from this technique is limited only by
the degree to which parabolic laminations can represent the
true profile. Computation time is also short, just double that
of the simplest method (post reduction).

The linear lamination method profiles were generally at
lower altitudes and smaller densities than the daytime model;
near the F2 peak, it was about 16 km too low. However, the

 nighttime model test shows a different behavior. Near the
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satellite, the computed heights were well above the model,
but they dropped to a few kilometers below it near the peak.
Thus, when fh/f is large, the profile is too high and this
error is offset bnly near the F2 peak where the linear
laminations cannot accomodate the model curvature.

The differences between these techniques are most
apparent in the computed values of electron density scale
height defined by lﬁ = - IW %_ZN- . This quantity is important
because of its relation to temperatures and ion composition.
Computed values of H are shown in Figures 12 and 13. Only
the iterative technique agrees almost exactly with the model.
In the region near the satellite, the step-by-step techniques
show errors in H of up to 30% . Values of H from the post
reduction technique are smooth and fairly accurate, while
those of the linear method are generally too great. Variations
in the computed values of H increase with the ratiofh /f for all
techniques except the iterative one.

The electron content of each profile is listed in Table
4 and, as expected, there was little difference between the
methods.

From these model studies it has been found that, for
accurate topside electron density profiles which can be studied
in detail, the iterative method of compensating for fh(Z),

coupled with laminations parabolic in log fN’ is well suited

and much superior to the other techniques tested.
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Table 4

Computed electron content for the region from 1000 Km
to the F2 peak

Total Electron Content (cm )

1 2 3 4 5
Night-time 12
profile 2.879 2.865 2.784 2.859 2.6798 x 10
Day-time 12
profile 12.112 11.969 11.887 12.037 12.065 x 10
1 = Post Reduction
2 = Step=by-step
3 = Step-by-step with post reduction
4 = Iterative solution
5 = IL.inear method
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4.2 A HIGH LATITUDE PROFILE

Reduction of Alouette high latitude ionograms requires
more precise techniques than employed in other regions. The
relatively low values of electron density at the satellite result
in large ratios of fh/fx so that the group refractive indices will

be quite sensitive to the variation of f. with height.

h
The ionogram shown in Figure 14 was reduced by the
iterative, post reduction, and linear laminations. Virtual
heights were scaled at relatively wide intervals so that adequate
frequency resolution could be obtained. The electron density
profiles are shown together in Figure 15. The post reduction
method gave true heights about 15 km lower than the iterative
method except near the satellite where both were about the same.
The linear method profile was much higher than the iterative
one by about 50 km in the middle of the protile and about 35 km near
the layer peak. Nighttime model studies have shown that when the
ratio fh/fx is large at the satellite (it was 0.86 for this ionogram)
that the linear method heights were well above those of the iterative

method and that the situation is reversed for small ratios.

Electron density scale heights of these profiles are shown in

Figure 16. Both the iterative and post reduction methods give similar

results, and indicate a non-isothermal ionosphere with appreciable
He+ above 900 k. Linear method scale heights are generally lower

except near the satellite and the layer peak.
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o Appendix 1 Evaluation of the Integrals in Equation (4).

Integrals of the form

must be calculated numerically because of the complicated
integrand. Special precautions must be taken because p' has
a pole at the reflection level. The first of these is to obtain
a numerically accurate formulation for u' which is suitable

for a digital computer. Following the notation of Ratcliffe

(1959),
_e 2,2
X = fN /£
Y =f /f
and let S = sin ¢
C =cos ¢

where ¢ is the angle between the wave normal and the earth's
magnetic field.
Starting from the collisionless Appleton-Hartree

equation, the following expressions can be derived

2 2

L1 { YC°X [ YS (1+X)}}

w' o= — <1 - (1-x)- = 11F2)
° K, SO?[YSZ+R] R

ML

2

_ Y(1+C7) + R

b, = N1-X { z Z }
Y(1+C°) - YC°X+R
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_ Y[1+C2(1-2X)] + R
© YSZ+R

R = \/YS + 4¢% (1-x)°

_ 1 {1 . X(1-5,) [1+ v%s* (1+Xﬂ}
x "o ——stz R T-X

AT X7 YX0-X) [Z(I-X)-YZSZ+YR J}
x|

v U sy la-0%-v%s%+ R

[

5 :2[ (1-X) +,Y°2 (%(Cz-l) J
* 2(1-X) - YS” + YR

It is easily seen that the poles occur because of the factors
1/ ’\’1 - Xand 1/ '\}l—X—Y in the ordinary and extraordinary
modes; respectively. The remaining terms in both expressions
for p' are finite and well behaved. The major differences
between these rather formidable expressions and those used by
other workers are that the singular terms are shown explicitly
and the remaining terms are numerically accurate.

For the ordinary mode, define an angle 6 by
sin® 8 =X, 0 < 6 < w/2.

Then changing the variables of integration to 6 , we have

dizfcos 6do,




and
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w'o dfy = fu' N1-XxXde,

thus removing the pole from the integrand. Similarly, for

the extraordinary mode,

Then

But

Therefore,

dizf'\ll-Y cos 6 4 6.

cos O = N1-X-Y/ N1 -Y.

w' df = ful N1-X-Y/ N1-Y d 6,

and this pole is also removed. The reason for these particular

forms for p' is now evident. The singular terms can be

removed before numerical calculations rather than relying on the

digital computer to make accurate cancellations-.

Let o' be the new integrand after removing the singular term,

2 2 £ 2 2 3
{1 _YGtx IEI_X)_YS él_+X)}}{Y(1+C )-YC X+R}2

1

SOZ[YSZ+R] Y(1+C2) + R
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o' =f{l+ %) [1+ Yész 1+Xq {(};(YI'X;U-X)Z [Z(I—X)-YZSZ+YR
v4'2E 1+ c%

1-X] 2(1-X)%-v%s%+ YR

Many numerical integration formulas exist, but the one
giving the highest accuracy with the fewest sample points is
Gaussian quadrature (Kunz, 1957). In theory, other methods
such as Simpson's rule would be suitable if more points were
used. However, computational round-off errors become serious
as the number of points is increased, and the computation time
also increases. We have used a five or seven point Gauss-Legendre
quadrature formula when integrating near the reflection level, and

a three point formula elsewhere.

]

|~

2

j
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Appendix 2 Verification of Equation (7).
Consider M-1+N linearly independent equations in

M+ 1 unknowns X, then

o
Il 5

"
e

where D is an M-1+N by M+1 array of coefficients.
h' is an M-1+N column of data and
X is an M+ 1 column of unknowns.

The least squares solution requires that

M-lTJ,N M+ 1
. ‘\

D. X -nh'.
/, L P~ Ry

j=1 k=1

2

be a minimum with respect to each X.

Alternatively,
M-1+N M+1
- . >
- 1
0 Z Z (Djkxk h j)
j=1 k=1
= =0 fors=1toM+ 1.

9 X
s

Therefore,

M-1+N M+1
- h! = = .
Z 2 z (DX, -h')D; =0 fors=1, M+ 1
j=1 k=1
This gives M+ 1 independent equations in M+ 1 unknowns.
Now consider

D'D X-D' n' =0
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Let
t
_I_{ = p_ _}_1 so that
M:1+N
8 '
Rs= 4 P My
i=1
Define E=D'D,
M-1+N
Esk = /‘/ DJS D_]k’
j=1
Then
EX-R=0
becomes
M-1+4N M+1
N o
/o DXy
=1 k=1

-h'.)D. =0
i'"js

s =1, M+ 1.

s =1, M+1; k=1, M+1.

for s =1, M+1,

which is the desired least squares formulation.
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